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From the informal definition of the limit we know that:  

lim
𝑥→𝜋

𝑥2 = 𝜋2 

This is because the function 𝑥2 is an elementary function, and it is continuous for 

all values of 𝑥. We can, therefore, conclude that for any 𝑥, the limit equals to the 

function value at 𝑥. 

It seems simple and straightforward, but what is the value of 𝜋2? We cannot 

provide the exact value of 𝜋, because 𝜋 is an irrational number. As a result, we 

cannot compute the exact value of 𝜋2. We will now show an example of a 

problem in which the precision of the calculation of 𝜋2 is crucial. We will present 

the problem of calculating the orbit of a planet around the sun. Specifically, we 

will attempt to calculate the orbit of planet Mercury around the sun. 

The average radius of Mercury's orbit around the sun is: 5.8 × 1010 meters. The 

mass of the sun is: 1.99 × 1030 kilograms. We can use Kepler's third law to 

determine the time it takes planet Mercury to complete a single orbit around the 

sun. This law states that the orbital time of a planet,  𝑇𝑀, holds the following 

equation: 

𝑇𝑀
2 = (

4𝜋2

𝐺𝑚𝑠
) 𝑟3 

Where 𝑚𝑠 denotes the mass of the sun (which is known to us), 𝑟 is the average 

radius of the orbit of planet Mercury around the sun (also known to us) and 𝐺 is 

a constant of the solar system whose value is: 

𝐺 = 6.673 × 10−11 [
𝑁 ∙ 𝑚2

𝑘𝑔
] 



As one can observe, the accuracy of the calculation planet Mercury's orbit1 

depends on the accuracy of the value we use for 𝜋2. 

Suppose we require to calculate the value of 𝜋2 to an accuracy of 0.01. This 

requirement is translated to the following question: what is the accuracy of π 

needs to be to give us an accuracy of 0.01 in the calculation of 𝜋2. We can 

rephrase this question slightly: how close do we need to get to the true value of 

π in order to get close enough to the true value of 𝜋2 to meet the accuracy 

requirements of the problem. 

The formal definition of the limit provides answer to this question. 

We want the distance between the calculated value, 𝑥2, and the value of 𝜋2 to 

be less than 0.01. How far from the exact value of π be from the actual value of 

π to meet this requirement? We have the tools to formulate this problem 

mathematically. 

How do we measure distance from a point? With the notion of an absolute 

value. So, we can phrase our problem like this: If we want |𝑥2 − 𝜋2| < 0.01, how 

small should the difference be |𝑥 − 𝜋|? 

Further in our studies, we will learn how to solve such a problem, but its solution 

is not trivial. At this point, we will re-formulate the problem more simply by 

taking root from both sides of the equation, which describes Kepler's third law. If 

we do this we will get: 

𝑇𝑀 = 2𝜋 ∙ √
𝑟3

𝐺𝑚𝑠
 

For this calculation we need to find an approximation for 2𝜋. We can formulate 

our accuracy problem as follows: If we require that |2𝑥 − 2𝜋| < 0.01, how small 

|𝑥 − 𝜋| should be? We can find the solution as follows: 

|2𝑥 − 2𝜋| = 2 ∙ |𝑥 − 𝜋| < 0.01 

Our requirement is that |2𝑥 − 2𝜋| < 0.01, and we succeeded to express it as a 

function of what we are looking for: |𝑥 − 𝜋|. So we can say that: 

                                                                 
1 Please note that the other values are also approximations and not exact values. What we are trying 

to do in this exercise it to match the level of accuracy of the value of 𝜋2 with the rest of the values 
in the formula. 



|𝑥 − 𝜋| <
0.01

2
= 0.005 

In other words, if the distance of 𝑥 from 𝜋 is less than 0.005, then the distance of 

2𝑥 from 2𝜋 is less than 0.01, in accordance with our accuracy requirements. 

Another way to do find the when we comply with the accuracy requirements is 

using absolute values, as follows: 

2𝜋 − 0.01 < 2𝑥 < 2𝜋 + 0.01 ⟺  |2𝑥 − 2𝜋| < 0.01 

 And from this expression it follows that: 

𝜋 − 0.005 < 𝑥 < 𝜋 + 0.005 

We will now demonstrate this process graphically. First, we will observe how the 

graph of the function 𝑦 = 2𝑥 looks like and the area around 𝜋 in the x-axis and 

around 2𝜋 in the y-axis. 

 

Figure  1 : the graph of the function 𝒚 = 𝟐𝒙 

Now let's have a close-up look at the graph around 𝜋 on the 𝑥 axis and around 

2𝜋 on the 𝑦 axis. 



 

Figure 2: a close-up look at the graph around π on the x axis and around 2π on the y axis 

Between the blue and green lines we find the permitted range for the value of 

the 2π calculation so that it remains within the accuracy requirements we have 

defined, between 2𝜋 +  0.01 and 2𝜋 − 0.01. To reach this range, we must use 

the value of π that is between the black line and purple line, or between         

𝜋 +  0.005 and 𝜋 − 0.005. We can describe it mathematically as follows: 

|2𝑥 − 2𝜋| < 0.01 ⟺ |𝑥 − 𝜋| < 0.005 

The formal definition of the limit solves a similar problem. We can define 𝜀 as 

the precision requirement of the calculation and set 𝛿 to be the answer that 

guarantees the accuracy requirement. The formal definition of the limit: 

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 

Means that for every 𝜀 > 0 there is 𝛿 > 0 so that every x in the function range 

exists: 

0 < |𝑥 − 𝑎| < 𝛿 ⟹  |𝑓(𝑥) − 𝐿| < 𝜀 



We can rephrase this statement to conform with the accuracy problem: for the 

requested accuracy, 𝜀 > 0, we are looking for 𝛿 > 0 to ensures that if:             

𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) − {0} then the function 𝑓(𝑥) will be within the requested 

precision range: 𝑓(𝑥) ∈ (𝐿 − 𝜀, 𝐿 + 𝜀). 

In Figure 3 you can observe an example of a formal calculation of the limit: 

lim
𝑥→2

𝑥2 = 4 

Given an accuracy requirement, some accuracy, 𝜀, greater than 0. We look for 

𝛿 >  0 so that for every 𝑥 in the definition field exists: 

0 < |𝑥 − 2| < 𝛿 ⟹  |𝑥2 − 4| < 𝜀 

 

Figure 3: example of a formal calculation of the limit: 𝐥𝐢𝐦
𝒙→𝟐

𝒙𝟐 = 𝟒 


